Wiki Formatting

From CHS Sigma
Jump to: navigation, search

Just about everything you need can be found here:

https://www.mediawiki.org/wiki/Help:Formatting

and here:

https://www.mediawiki.org/wiki/Help:Images

but below are some more obscure tips.

Youtube Links

You put:

{{#ev:youtube|p08_KlTKP50}}

(where p08_KlTKP50 is the unique identifier for a Youtube video found in the URL, usually after "?v=")

You get:

More info: https://www.mediawiki.org/wiki/Extension:EmbedVideo

References

You put:

Turbulent flow is a less orderly flow regime that is characterised by eddies or small packets of fluid particles which result in lateral mixing. In nonscientific terms laminar flow is "smooth", while turbulent flow is "rough".<ref>R. Smith, "Size of the Moon", Scientific American, 46 (April 1978): 44-6.</ref>
<references />

You get:

Turbulent flow is a less orderly flow regime that is characterised by eddies or small packets of fluid particles which result in lateral mixing. In nonscientific terms laminar flow is "smooth", while turbulent flow is "rough".[1]

  1. R. Smith, "Size of the Moon", Scientific American, 46 (April 1978): 44-6.

Code

You put:

<div style="height:15em; overflow:auto; border: 1px solid #008">
<syntaxhighlight lang="c">
int ledPin = 13;
void setup() {
  // initialize digital pin 13 as an output.
  pinMode(ledPin, OUTPUT);
}
void loop() {
  digitalWrite(ledPin, HIGH);   // turn the LED on (HIGH is the voltage level)
  delay(1000);              // wait for a second
  digitalWrite(ledPin, LOW);    // turn the LED off by making the voltage LOW
  delay(1000);              // wait for a second
}
</syntaxhighlight>
</div>

You get:

int ledPin = 13;
void setup() {
  // initialize digital pin 13 as an output.
  pinMode(ledPin, OUTPUT);
}
void loop() {
  digitalWrite(ledPin, HIGH);   // turn the LED on (HIGH is the voltage level)
  delay(1000);              // wait for a second
  digitalWrite(ledPin, LOW);    // turn the LED off by making the voltage LOW
  delay(1000);              // wait for a second
}

Math

You put:

<math>x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}</math>

You get: $ x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} $